The damped spring

We've modeled a damped spring-mass system using

$$m y''(t) + \gamma y'(t) + k y(t) = 0.$$

We have expressed solutions in terms of

$$\alpha = \frac{\gamma}{2m}$$
 and $\omega_0 = \sqrt{\frac{k}{m}}.$

Consider a series of experimental runs in which k, m and the initial conditions are held constant while γ is varied from run to run. For each run, a value of γ is fixed while data on y versus t is collected and plotted. Think of each plot as a frame in a movie with frames ordered by increasing values of γ . (That is, think of γ as the playing time for the movie.)

We know that the form of the solution for our model depends on the value of γ relative to $\gamma_c = 2\sqrt{km}$. If we use solutions to make movie frames showing y versus t, what will we see as the movie plays through the "time" γ_c ? Will the solutions for $\gamma < \gamma_c$ flow continuously through the solution to γ_c to solutions to $\gamma > \gamma_c$ or will there be a discontinuous jump at γ_c ?

- 1. For the case $\gamma < \gamma_c$, find the specific solution with the initial conditions y(0) = 0and $y'(0) = v_0$.
- 2. For the case $\gamma = \gamma_c$, find the specific solution with the initial conditions y(0) = 0and $y'(0) = v_0$.
- 3. For the case $\gamma > \gamma_c$, find the specific solution with the initial conditions y(0) = 0and $y'(0) = v_0$.
- 4. Analyze the limit of your solution in 1 as $\gamma \to \gamma_c^-$. Compare this limit with your solution from 2.
- 5. Analyze the limit of your solution in 3 as $\gamma \to \gamma_c^+$. Compare this limit with your solution from 2.
- 6. Will the movie be continuous or discontinuous at γ_c ? Explain how you reach your conclusion.